Rare Events and Scale-Invariant Dynamics of Perturbations in Delayed Chaotic Systems

Sánchez, Alejandro D.; López, Juan M.; Rodríguez, Miguel A.; Matías, Manuel A.
Physical Review Letters 92, 204101 (1-4) (2004)

We study the dynamics of perturbations in time delayed dynamical systems. Using a suitable space-time coordinate transformation, we find that the time evolution of the linearized perturbations (Lyapunov vector) can be mapped to the linear Zhang surface growth model [Y.-C. Zhang, J. Phys. France 51, 5129 (1990)], which is known to describe surface roughening driven by power-law distributed noise. As a consequence, Lyapunov vector dynamics is dominated by rare random events that lead to non-Gaussian fluctuations and multiscaling properties.

Additional files

Esta web utiliza cookies para la recolección de datos con un propósito estadístico. Si continúas navegando, significa que aceptas la instalación de las cookies.

Más información De acuerdo