Interplay between resonant tunneling and spin precession oscillations in all-electric all-semiconductor spin transistors

Alomar, M. I.; Serra, L.; Sánchez, D.
Physical Review B 94, 075402 (1-11) (2016)

We investigate the transmission properties of a spin transistor coupled to two quantum point contacts acting as a spin injector and detector. In the Fabry-Pérot regime, transport is mediated by quasibound states formed between tunnel barriers. Interestingly, the spin-orbit interaction of the Rashba type can be tuned in such a way that nonuniform spin-orbit fields can point along distinct directions at different points of the sample. We discuss both spin-conserving and spin-flipping transitions as the spin-orbit angle of orientation increases from parallel to antiparallel configurations. Spin precession oscillations are clearly seen as a function of the length of the central channel. Remarkably, we find that these oscillations combine with the Fabry-Pérot motion, giving rise to quasiperiodic transmissions in the purely one-dimensional case. Furthermore, we consider the more realistic case of a finite width in the transverse direction and find that the coherent oscillations become deteriorated for moderate values of the spin-orbit strength. Our results then determine the precise role of the spin-orbit intersubband coupling potential in the Fabry-Pérot-Datta-Das intermixed oscillations.

Aquesta web utilitza cookies per a la recollida de dades amb un propòsit estadístic. Si continues navegant, vol dir que acceptes la instal·lació de la cookie.

Més informació D'accord