Unraveling the emergence of collective learning in systems of coupled artificial neural networks points to broader implications for machine learning, neuroscience, and society. Here we introduce a minimal model that condenses several recent decentralized algorithms by considering a competition between two terms: the local learning dynamics in the parameters of each neural network unit, and a diffusive coupling among units that tends to homogenize the parameters of the ensemble. We derive an effective theory for linear networks to show that the coarse-grained behavior of our system is equivalent to a deformed Ginzburg-Landau model with quenched disorder. This framework predicts depth-dependent disorder-order-disorder phase transitions in the parameters' solutions that reveal a depth-delayed onset of a collective learning phase and a low-rank microscopic learning path. We validate the theory in coupled ensembles of realistic neural networks trained on the MNIST dataset under privacy constraints. Interestingly, experiments confirm that individual networks -- trained on private data -- can fully generalize to unseen data classes when the collective learning phase emerges. Our work establishes the physics of collective learning and contributes to the mechanistic interpretability of deep learning in decentralized settings.
Aquesta web utilitza cookies per a la recollida de dades amb un propòsit estadístic. Si continues navegant, vol dir que acceptes la instal·lació de la cookie.